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Abstract—Indoor positioning using inertial sensors can be used
as an alternative to GPS because indoor GPS signals are weaker
than outdoors. Inertial sensors such as accelerometers and
magnetometers are already packaged in smartphone devices, so
the use of smartphones for indoor positioning is an option.
Footstep detection is essential in determining position indoors; in
this study, footsteps were detected using the accelerometer sensor.
‘While the heading direction is calculated using the Magnetometer
sensor. Previous studies have shown that the position of the
smartp hone, when held, affects indoor positioning estimated. So in
this study, it is proposed to use the angle of inclination. In addition,
to identify the initial position, a marker in the form of a QR Code
is used. The proposed approach consists of 5 processes, namely:
calculating the tilt angle, detection of footsteps, calculating the
heading direction, estimated displacement, and the estimation of
the position. The error in the position estimation is used as a test
parameter. The longer path length results in a smaller error than
the shorter path.

Keywords—Indoor  positioning,  tilt
accelerometer, magnetometer.
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I. INTRODUCTION

Information about the floor plan is necessary, especially for
visitors who visit the building for the first time. The floor plan
is usually affixed to the room's wall or a corner of the room.
However, the floor plan cannot provide up-to-date information
on the position of visitors due to the limited number of floor
plans posted in the room and the position of visitors who move,
so a navigation system is needed. One navigation system
technology is the Global Positioning System (GPS) [1].
However, GPS cannot work properly indoor areas due to signal
attenuation caused by building materials [2][3][4]. Thus, a
navigation system indoors that does not use GPS is required
[411516117118][9]. Indoor positioning can be grouped based on
its technology, namely: optical technology, sound-based
technology, radio frequency, hybrid technology, and passive
technology [3]. There are examples of optical-based
technologies such as Infrared (IR) and Visible Light
Communication (VLC) [10][11]. For sound-based technology
can use ultrasonic [ 12]. Indoor positioning technologies that use

radio frequencies such as Wi-Fi [13], Bluetooth [14], ZigBee
[15] and RFID [16]. While, passive technology generally uses
inertial sensors, such as magnetic or magnetometers [17],
accelerometers, and gyroscopes [18].

Indoor positioning that uses an inertial sensor is pedestrian
navigation [17][18]. Assuming every visitor to a building is a
pedestrian, inertial sensors can be used for navigation systems
for visitors in a building. Pedestrian navigation techniques that
use inertial sensors are also known as Pedestrian Dead
Reckoning (PDR). PDR technique combines step detection,
stride length estimation, and user direction estimation [19]. The
user's position is updated by adding the current relative
displacement estimate to the previous position estimate [19].

The smartphone's size, which is relatively small so that it is
easy to carry everywhere, is reasonably practical if used for
indoor positioning, especially pedestrian navigation systems. In
addition, the smartphone has also been installed with several
inertial sensors, such as an accelerometer, gyroscope,
magnetometer, and other sensors. The inertial sensor contained
in the smartphone does not require particular infrastructure if it
is used for indoors positioning [20][21][22]. In pedestrian
navigation using the PDR technique, the results of position
calculations are very dependent on the carrying position of the
smartphone device used by the user [23]. Consequently, the user
must maintain the smartphone position. For example, the
carrying position smartphone is horizontal. Its carrying position
flat must be held while calculating the indoor position so that the
sensor readings do not change drastically.

Estimation of stride length and estimation of heading are
essential parameters for positioning indoors using the PDR
technique [4][23][24][25]. Another study combined these
parameters with RSS from Wi-Fi and Bluetooth [26][27]. This
study combined stride length estimation and heading estimation
with smartphone tilt angle. This tilt angle is calculated based on
the acceleration generated by the accelerometer sensor. The
current indoor position is identified using the acceleration
threshold value, compared with the acceleration value generated
by the accelerometer sensor when the user steps. The user's
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heading uses a compass direction that can be identified using the
magnetometer sensor.

II. METHODS

Footstep detection, stride length estimation, and user
direction estimation are the main processes in indoor positioning
using the PDR technique [19]. In addition, the carrying position
of a smartphone is also essential [23]. Therefore, the PDR
technique is combined with reading the tilt angle. In this study,
the sampling rate of the accelerometer sensor is 60 Hz. The
indoor positioning process is shown in Fig 1.

Step Detection Process

Calculate Tilt
Angle

Accelerometer

Sensor > Step Detection

Calculate

Magnetometer ||
Heading

Sensor

Fig. 1. Indoor Positioning Process

A. Tilt Angle

The acceleration generated by the accelerometer sensor is
used to calculate the tilt angle of the smartphone held by the
user. The tilt angle can be calculated using Eq. (1), also used in
the previous study [28].

Axc+ A 180
=)

6= tcm‘1( - (1)

T
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Fig. 2. Til Angle of Smartphone Position

As shown in Fig 2, the dotted line is the direction of the
accelerometer sensor's axis (x,y,z); when the smartphone is
placed horizontally, the line is used as a reference point. While
the arrows indicate the direction of the axis when held by the
user. When the user uses a smartphone in a position shown in
Fig 2, the resulting angle ranges from 15 to 40 degrees. The
angle value is used as the minimum angle threshold value Bthuin
and the maximum angle threshold value Othuas.

B. Step Detection

The acceleration generated by the three axes of the
accelerometer sensor is used to calculate the Signal Vector
Magnitude (SVM). In the previous study [29][30][31], the SWVM
signal was calculated using equation (2). Ax, Ay, and Az are
accelerometer acceleration values for the x, y, and z axes, while
SVM is the square root of the sum of the squares of each axle.

SYM = AT+ (A,)7 + (4,7 (2)

Gravity contributes to the acceleration value on each axis of
the accelerometer sensor; in this study, the contribution of the
value of gravity is reduced by using a filter. Filtering is done by
software using the program code provided on the official
Android Developer website [32]. Thus, in this study, the SVM
value is calculated using equation (3). SVMg; (i) is the square
root of the sum of the squares of each filtered axis at the i-th
sampling point. Meanwhile, Axe; (i), Aypy (i), and Azp; (i) are
the x, y, and z axis acceleration values that have been filtered at
the i sampling point.

SVMyyy(0) = [ (Axp (D)) + (Ayp (D)2 + (Azpy (D)2 (3)
wherei =110 30

Each one-step movement will produce an SMV filter pattern,
as shown in Fig.3 (which is flanked by a yellow line); the
resulting pattern is in the range of 30 sampling points so that the
i sampling point in Eq. (2) starts from 1 to 30. The range of
sampling points is referred to as the sampling length, denoted by
n. The assumption is that all footsteps are steps forward.

step step step

1step
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Fig. 3 Sampling of Walking.

In addition to using the SVM filter value, the parameter used
to detect footsteps is the difference from the SVM filter, which
is calculated using Eq. (4). SVMdiff(i) is the difference of the
SVM filter at the / sampling point starting from 1 to n-1.

SVMuigr (i) = SVMpy (i + 1)- SVMzq (i) (4)

The value of the SVM filter during one step ranges from 0.8
to 2.75, as shown in Figure 3 (red line), and SVMdiff'is smaller
or equal to 2. The value of 0.8 is used as minimum threshold for
SVMithmin, and the value of 2.75 is the maximum threshold for
SVMthmax . The flow for detecting a single footstep is as
follows:

(1) Read the x, y, and z axis acceleration data from the
smartphone's accelerometer sensor.

(2) Calculate the angle of inclination using equation (1).
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(3) If Othy, <6 < Othy,, calculate the SVM filter (SVMy)
using Eq. (3). Steps (1) to (3) are repeated so that the
number of sampling is equal to n (30 samplings).

(4) Calculate the difference in SVM filter (SVM.4) using Eq.
(4.

(5) Trace SVMuir from 1 to n-1 sampling. If there is a
difference greater than 2 (threshold), it is possible that the
sampling value that has been taken is not a pattern of one
footstep, repeat sampling from step (1). However, if the
SVMyir difference is less than or equal to 2, go to step 6.

(6) Trace SVMgy from 1st to n sampling. One step is detected
if there are 5 to 10 values that meet SVMthmin < SVMun <

SVMthyex (COUNTpper) and there are 3 to 10 values that
meet SWMg < SVMthyi, (COUNTheiow).

Pseudo code step detection method
N (Number of sampling)= 30
Gthmin= 15
Sthm= 40
diffen=2
WHILE (Read Sensor):
INPUT: Axyi), Ayyi), Az (until i=N)
Calculate Axeiigir, AVeirigi), AZeinngd)
FOR 1 =1 to N
Calculate tilt angle @
IF Sthmin = 8 £ Sthmax THEN
Calculate SVMfillgig
ENDIF
ENDFOR
FOR 1 =1 to N
Calculate SVMgies
IF SVMyiesqsy < diffen THEN
IF SVMthpi, € SVMeijngy = SVMEhpe
THEN
COUNTupper= COUNTuppertl
ELSETF SWMeii14:y < SVMthpi, THEN
COUNTbe10w=COUNTbelow +1
ENDIF
ENDIF
ENDFOR
IF (5 > COUNT.pper >10)

AND (3 > COUNTpeioy > 10) THEN
STEP = TRUE
REMOVE all index of Axi, Ayi, AZi
ELSE
STEP= FALSE
REMCOVE first index of Ax;, Ay;, AzZ;
ENDIF
ENDWHILE

C. Calculate Heading

The heading direction of smartphone users is detected using
the Magnetometer sensor on the smartphone. The values of the
Magnetometer sensor are converted into an azimuth angle. The
azimuth value obtained is divided into four parts, as shown in
Fig 4, each part is used to estimate the user's heading direction.

Identify applicable funding agency here. If none, delete this text box.

wa7oe

Fig. 4. Azimuth

D. Displacement Estimation

The estimated displacement from one point to the next is
known based on detected footsteps. So, the length of the footstep
determines how much the value of the displacement that occurs.
Therefore, it is necessary to find a way to determine the length
of the stride. Estimation of stride length can use static and
dynamic approaches [30][33][34]. One of the popular models
for estimating stride length is the Weinberg model [35], which
is defined using Eq. (5).

Step_Length =k X [a,,0x + Anin (5)

k is a constant, while 4, dan @,p;, are the minima and
maximum values of acceleration. Ho et al. [34], dynamically
calculhate k using Eq. (6), where Dgepis the average velocity
magnitude on the accelerometer sensor's x, y, and z axes at each
step. To calculate ﬁstep using equations (7), (8), (9), and (10).

k=0.68-0.37 XUg +0.15 X 025 (6)

Ostsp = ‘\/(ﬁstspx)z + (GstspY)z + (Ostepz)z [-”

Chronologically, Useepyxs Dseepys dan Ogepz are the average
velocity on the x, y, and z axes with a sampling point length of
30. The current velocity value is updated using the previous
velocity value, while the time interval is obtained from 1 divided
by the sampling rate sensor, which is 60 Hz

30
Dutepr = 5 ). (s i = D + Uxgu(D) x D)) ®)

i=1

30
Outepr = 75 ) (Dueen (i = D+ Aypa® X 2)) )

i=1

- 1

30
- . . 1
UstspZ = 30 Zi=1 (UstepZ(L - 1) + (Azfi[(l) X ;)) (10)

Furthermore, using the Weinberg model, the ke, value is
used to calculate the step length (L) so that equation (5) is
rewritten into equation (11). Where max(SVMfil) and
min(SVM{il) respectively, are the maximum and minimum
values of SV M that are found throughout 30 sampling points.

L= kg X :]max{SVMm) + min(SV M) (11)
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E. Position Estimation

The user's position in the room is presented on a smartphone
screen display as a two-dimensional floor plan. Thus, a
comparison scale is needed between the actual room size and a
two-dimensional room plan. The displacement in one footstep
will be represented by the displacement of the point in several
pixels on the smartphone screen; the displacement of the point
follows the coordinate system on the smartphone screen. The
displacement is calculated using equations 12 and 13.

S, =L x= (12)
Ly

S, =L xbn 13

y =L x2 (13)

N

S;and §, are the value of point displacement in pixels on the
x and y axes of the smartphone screen. While /,, and p,, are the
length and width of a two-dimensional plan that represents the
shape of the room in pixel size. For [, and p, are the length and
width of the room. S. and S, are calculated if footsteps are
detected. As shown in TABLE I, §; and S, are used to update the
current positions of x and y, while xp and vy are the previous
positions.

TABLE 1. UPDATE POSITION IN FLOOR MAPS SMARTPHONE

No Azimuth () Current position
I | 0=a=45and 315 <a=359 X=Xg, Y=Yy + 8y
3 45< =135 X=Xg-Sy . ¥= Yo
3 | 135=a=225 X=Xg, Y= Yo - Sy
4 225 =a =315 X=Xo+ 8y, ¥=Yo

III. RESULT AND DISCUSION

The smartphone Model M1804C3DG is used as the test
device. Its device has an Octa-Core Max 2.00 GHz processor, a
screen size of 720 x 1440 pixels, and an accelerometer sampling
rate of 60 Hz. Participants use the same device to perform the
test scenarios.

A. Map of Building

The building presented in map form does not point to the
north exactly but has an angle difference of 8°, as shown in Fig.
5. So before the movement value is updated, the angle in Table
1 is reduced by 8° using equation (14).

a=oa-—38° (14)

B8 aRcode [Start]

Fig. 5. Floor plans

Pedestrian navigation using the PDR technique requires a
reference point as the initial position. In this study, to determine
the starting position, smartphone users must scan a QRcode. The
QRcode contains information on the position of the x and y-axis
maps which are presented in the smartphone application. The
QRcode label is placed in an easy-to-reach position and is the
first point found by users visiting the building, for example, the
exit/entrance of elevators and stairs.

B. Footstep Detection Test

The technique used to detect footsteps was performed on two
participants, one male and one female, with a profile as shown
in Table 2. Each participant took 7 test scenarios with a total of
280 steps. Each scenario takes a different number of steps, as
shown in Table 3.

TABLE II.  PARTICIPANT PROFILE
Participant Gender Height (cm) Weight (kg)
1 Male 170 70
2 Famale 150 50
TABLE III. PARTICIPANT TEST
N Ateual Detected steps
0.
Step Participant T Farticipant 2
1 5 6 6
2 10 9 11
3 15 17 17
4 23 26 28
5 50 53 60
6 75 80 83
7 100 97 110
% error = |actual step—detected step| x 100% (15)

actual step
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Fig. 6. Error percentage

The error percentage of each test scenario is calculated using
equation (15). Fig 6 shows the percentage of errors decreases
when the number of steps increases. This is probably due to the
pattern of steps at the beginning of the walking; the acceleration
wvalue is irregular.

C. Floor plans of the test.

The initial position is known based on the QRcode installed
at a certain point in the room (Fig. 7(a)). The smartphone is held
while maintaining a tilt angle of 15 to 40 degrees, as shown in
Fig. 7(b). For the user to know the tilt angle, the application
presents the tilt angle of the smartphone held by the user, as

shown in Fig. 8

(a) Scan initial position
Fig. 7. Experimental Scenario

(b) Smartphone was placed in the hand

R sk
IGHT 1o
AZIMIFTI 0.0
TILT ANGLE : 3596908

TOTAL ACCELERATION 016816457

FoEITIIN s 0

. - -

Fig. 8 Appshows position and tilt angle

The test line is made by drawing a straight line from the
Qrcode point to the next QRcode; then, the line is used as a
reference point for the test plan path. Fig. 9 shows the results of
the test position and the test plan. The green dotted line indicates
the actual position path, while the red dotted line represents the
planned path. When testing, the subject moves from the origin
(0) to destination (d) through a planned path.

(a) Path testing 1

(b) Path testing 2

SEiE

T '
-
ety

(¢} Path testing 3 (d) Path testing 4
x ——-- planned path o origin
d destination

(0.0)

as direction  ——-— test result path

Y
Fig. 9. Path testing and results

Four test paths have been carried out; the first test path hasa
length of 74.5 m, the second test path has a length of 59.7 m, and
the third test path has a length of 32.5 m, while the fourth test
track has a length of 48.5 m. The testresults are calculated using
equation (16), Xpunnes A1d Vpines are the positions on the planned
x and y coordinates. While Xestimated and Yessimared are the positions
of the estimated results on the x, and y coordinates, respectively.
These x and y are the coordinate systems on the smartphone
screen.

|xpianm3d(i) - xestimated(i)l +

error(i) = (16)

|ypiarmed (i) — Yestimated(i) |

The error on each test path is shown in TABLE IV. Fig 10
shows that when the path length is shorter, there is a tendency
for error to be greater than when the path is longer. It may be
affected by the irregularity of the acceleration value when
starting the footstep.
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TABLE IV. PATHTESTING RESULTS

Path Error
1 7.07
2 17.94
3 2229
4 2782

® Error

® Fath Length

74.5
0
59.7

&0

i 485
50
40

3zs
30 27.82
22.29

5 17.94
w707 I

, N

Path 2

Path 1 Path 3 Path 4

Fig. 10. Error and path length

I'V. CONCLUSIONS

The initial position is identified from the information
contained in the QRCode. When the smartphone is used to
estimate the indoor positioning, the tilt angle is maintained at 15
to 40 degrees. The length of the sampling point from the
acceleration of the accelerometer sensor is evaluated to calculate
a step of 30 sampling points or half of the sensor's sampling rate.
To determine whether the occurrence of a step or not is based on
a threshold value. The test is carried out by calculating the error
of the position estimation. The test results show that the longer
path length produces a smaller error than the shorter path.

This study uses the maximum and minimum threshold
values statically to detect the occurrence of steps and only detect
forward steps. Using threshold values dynamically and detecting
backward steps can be potential for future work.
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